PinnedPaul IusztininDecoding MLAn End-to-End Framework for Production-Ready LLM Systems by Building Your LLM TwinFrom data gathering to productionizing LLMs using LLMOps good practices.Mar 1613Mar 1613
PinnedPaul IusztininDecoding MLThe LLMs kit: Build a production-ready real-time financial advisor system using streaming…Lesson 1: LLM architecture system design using the 3-pipeline patternJan 5Jan 5
PinnedPaul IusztininTowards Data ScienceA Framework for Building a Production-Ready Feature Engineering PipelineLesson 1: Batch Serving. Feature Stores. Feature Engineering Pipelines.Apr 28, 202311Apr 28, 202311
Paul IusztininDecoding MLThe 6 MLOps foundational principlesThe core MLOps guidelines for production MLSep 212Sep 212
Paul IusztininDecoding MLEmbeddings: the cornerstone of AI & MLFundamentals of embeddings: what they are, how they work, why they are so powerful and how they are created.Sep 71Sep 71
Paul IusztininDecoding MLRAG Fundamentals FirstWhy mastering the basics beats advanced techniquesAug 21Aug 21
Paul IusztininDecoding MLBuild Multi-Index Advanced RAG AppsHow to implement multi-index queries to optimize your RAG retrieval layer.Aug 20Aug 20
Paul IusztininDecoding MLBuilding ML Systems the Right Way Using the FTI ArchitectureThe fundamentals of the FTI architecture that will help you build modular and scalable ML systems using MLOps best practices.Aug 102Aug 102
Paul IusztininDecoding MLBuild a scalable RAG ingestion pipeline using 74.3% less codeEnd-to-end implementation for an advanced RAG feature pipelineJul 19Jul 19
Paul IusztininDecoding MLArchitect scalable and cost-effective LLM & RAG inference pipelinesDesign, build and deploy RAG inference pipeline using LLMOps best practices.Jun 11Jun 11